Практически во всех программах экспертных систем в процессе решения проблемы обязательно тем или иным образом обновляются представления реального мира вещей, с которыми эта программа имеет дело (например, так происходит в программе планирования поведения роботов STRIPS, которую мы рассматривали в главе 3). В программах с разным уровнем "интеллектуальности" для пересмотра допущений в этом представлении применяются более или менее сложные методы. В литературе можно найти такую классификацию этих методов.
(1) Монотонный пересмотр (monotonic revision). Это самый простой метод, при котором программа принимает информацию о новых фактах и вычисляет, как эти факты могут повлиять на имеющееся представление, чтобы оно перешло в результате в состояние релаксации. При этом предполагается учитывать "важные" последствия, хотя определить, какие последствия важные, а какие не очень, зависит от уровня интеллектуальности программы. Например, к важным скорее будет отнесен вывод q из р и (р
(2) Немонотонный пересмотр (nonmonotonic revision). Иногда бывает желательно "взять назад" принятые ранее допущения и урезать сделанные на их основе заключения. Если я вижу вас за рулем "Мерседеса", то первое предположение — что он ваш собственный, а следовательно, вы, мягко говоря, человек не бедный. Но если через некоторое время я узнаю, что вы его, пользуясь терминологией Гека Финна, "позаимствовали", то я должен буду отбросить не только предположение, что он ваш собственный, но и предположение о вашем богатстве.
(3) Немонотонное обоснование (nonmonotonic justification). Дальнейшее усложнение метода происходит в тех программах, в которых определенные предположения полагаются истинными в том случае, когда нет никаких явных свидетельств против такого предположения.