Абстрагирование
Смысл абстрагирования. Абстрагирование является одним из основных методов, используемых для решения сложных задач. Хоар считает, что "абстрагирование проявляется в нахождении сходств между определенными объектами, ситуациями или процессами реального мира, и в принятии решений на основе этих сходств, отвлекаясь на время от имеющихся различий" [42]. Шоу определила это понятие так: "Упрощенное описание или изложение системы, при котором одни свойства и детали выделяются, а другие опускаются. Хорошей является такая абстракция, которая подчеркивает детали, существенные для рассмотрения и использования, и опускает те, которые на данный момент несущественны" [43]. Берзинс, Грей и Науман рекомендовали, чтобы "идея квалифицировалась как абстракция только, если она может быть изложена, понята и проанализирована независимо от механизма, который будет в дальнейшем принят для ее реализации" [44]. Суммируя эти разные точки зрения, получим следующее определение абстракции:
Абстракция выделяет существенные характеристики некоторого объекта, отличающие его от всех других видов объектов и, таким образом, четко определяет его концептуальные границы с точки зрения наблюдателя.
Абстрагирование концентрирует внимание на внешних особенностях объекта и позволяет отделить самые существенные особенности поведения от несущественных. Абельсон и Суссман назвали такое разделение смысла и реализации барьером абстракции [45], который основывается на принципе минимизации связей, когда интерфейс объекта содержит только существенные аспекты поведения и ничего больше [46]. Мы считаем полезным еще один дополнительный принцип, называемый принципом наименьшего удивления, согласно которому абстракция должна охватывать все поведение объекта, но не больше и не меньше, и не привносить сюрпризов или побочных эффектов, лежащих вне ее сферы применимости.
Выбор правильного набора абстракций для заданной предметной области представляет собой главную задачу объектно-ориентированного проектирования.
Ввиду важности этой темы ей целиком посвящена глава 4.
По мнению Сейдвица и Старка "существует целый спектр абстракций, начиная с объектов, которые почти точно соответствуют реалиям предметной области, и кончая объектами, не имеющими право на существование" [47]. Вот эти абстракции, начиная от наиболее полезных к наименее полезным:
• Абстракция сущности | Объект представляет собой полезную модель некой сущности в предметной области |
• Абстракция поведения | Объект состоит из обобщенного множества операций |
• Абстракция виртуальной машины | Объект группирует операции, которые либо вместе используются более высоким уровнем управления, либо сами используют некоторый набор операций более низкого уровня |
• Произвольная абстракция | Объект включает в себя набор операций, не имеющих друг с другом ничего общего |
Клиентом называется любой объект, использующий ресурсы другого объекта (называемого сервером). Мы будем характеризовать поведение объекта услугами, которые он оказывает другим объектам, и операциями, которые он выполняет над другими объектами. Такой подход концентрирует внимание на внешних проявлениях объекта и приводит к идее, которую Мейер назвал контрактной моделью программирования [48]: внешнее проявление объекта рассматривается с точки зрения его контракта с другими объектами, в соответствии с этим должно быть выполнено и его внутреннее устройство (часто во взаимодействии с другими объектами). Контракт фиксирует все обязательства, которые объект-сервер имеет перед объектом-клиентом. Другими словами, этот контракт определяет ответственность объекта - то поведение, за которое он отвечает [49].
Каждая операция, предусмотренная этим контрактом, однозначно определяется ее формальными параметрами и типом возвращаемого значения. Полный набор операций, которые клиент может осуществлять над другим объектом, вместе с правильным порядком, в котором эти операции вызываются, называется протоколом. Протокол отражает все возможные способы, которыми объект может действовать или подвергаться воздействию, полностью определяя тем самым внешнее поведение абстракции со статической и динамической точек зрения.
Абстракция фокусируется на существенных с точки зрения наблюдателя характеристиках объекта.
Центральной идеей абстракции является понятие инварианта. Инвариант - это некоторое логическое условие, значение которого (истина или ложь) должно сохраняться. Для каждой операции объекта можно задать предусловия (инварианты предполагаемые операцией) и постусловия (инварианты, которым удовлетворяет операция). Изменение инварианта нарушает контракт, связанный с абстракцией. В частности, если нарушено предусловие, то клиент не соблюдает свои обязательства и сервер не может выполнить свою задачу правильно. Если же нарушено постусловие, то свои обязательства нарушил сервер, и клиент не может более ему доверять. В случае нарушения какого-либо условия возбуждается исключительная ситуация. Как мы увидим далее, некоторые языки имеют средства для работы с исключительными ситуациями: объекты могут возбуждать исключения, чтобы запретить дальнейшую обработку и предупредить о проблеме другие объекты, которые в свою очередь могут принять на себя перехват исключения и справиться с проблемой.
Заметим, что понятия операция, метод и функция-член происходят от различных традиций программирования (Ada, Smalltalk и C++ соответственно). Фактически они обозначают одно и то же и в дальнейшем будут взаимозаменяемы.
Все абстракции обладают как статическими, так и динамическими свойствами. Например, файл как объект требует определенного объема памяти на конкретном устройстве, имеет имя и содержание. Эти атрибуты являются статическими свойствами. Конкретные же значения каждого из перечисленных свойств динамичны и изменяются в процессе использования объекта: файл можно увеличить или уменьшить, изменить его имя и содержимое. В процедурном стиле программирования действия, изменяющие динамические характеристики объектов, составляют суть программы. Любые события связаны с вызовом подпрограмм и с выполнением операторов. Стиль программирования, ориентированный на правила, характеризуется тем, что под влиянием определенных условий активизируются определенные правила, которые в свою очередь вызывают другие правила, и т.д.
Объектно-ориентированный стиль программирования связан с воздействием на объекты (в терминах Smalltalk с передачей объектам сообщений). Так, операция над объектом порождает некоторую реакцию этого объекта. Операции, которые можно выполнить по отношению к данному объекту, и реакция объекта на внешние воздействия определяют поведение этого объекта.
Примеры абстракций. Для иллюстрации сказанного выше приведем несколько примеров. В данном случае мы сконцентрируем внимание не столько на выделении абстракций для конкретной задачи (это подробно рассмотрено в главе 4), сколько на способе выражения абстракций.
В тепличном хозяйстве, использующем гидропонику, растения выращиваются на питательном растворе без песка, гравия или другой почвы. Управление режимом работы парниковой установки - очень ответственное дело, зависящее как от вида выращиваемых культур, так и от стадии выращивания. Нужно контролировать целый ряд факторов: температуру, влажность, освещение, кислотность (показатель рН) и концентрацию питательных веществ. В больших хозяйствах для решения этой задачи часто используют автоматические системы, которые контролируют и регулируют указанные факторы. Попросту говоря, цель автоматизации состоит здесь в том, чтобы при минимальном вмешательстве человека добиться соблюдения режима выращивания.
Одна из ключевых абстракций в такой задаче - датчик. Известно несколько разновидностей датчиков. Все, что влияет на урожай, должно быть измерено, так что мы должны иметь датчики температуры воды и воздуха, влажности, рН, освещения и концентрации питательных веществ. С внешней точки зрения датчик температуры - это объект, который способен измерять температуру там, где он расположен. Что такое температура? Это числовой параметр, имеющий ограниченный диапазон значений и определенную точность, означающий число градусов по Фаренгейту, Цельсию или Кельвину. Что такое местоположение датчика? Это некоторое идентифицируемое место в теплице, температуру в котором нам необходимо знать; таких мест, вероятно, немного.
Для датчика температуры существенно не столько само местоположение, сколько тот факт, что данный датчик расположен именно в данном месте и это отличает его от других датчиков. Теперь можно задать вопрос о том, каковы обязанности датчика температуры? Мы решаем, что датчик должен знать температуру в своем местонахождении и сообщать ее по запросу. Какие же действия может выполнять по отношению к датчику клиент? Мы принимаем решение о том, что клиент может калибровать датчик и получать от него значение текущей температуры.
Для демонстрации проектных решений будет использован язык C++. Читатели, недостаточно знакомые с этим языком, а также желающие уточнить свои знания по другим объектным и объектно-ориентированным языкам, упоминаемым в этой книге, могут найти их краткие описания с примерами в приложении. Итак, вот описания, задающие абстрактный датчик температуры на C++.
// Температура по Фаренгейту
typedef float Temperature;
// Число, однозначно определяющее положение датчика
typedef unsigned int Location;
class TemperatureSensor {
public:
TemperatureSensor (Location);
~TemperatureSensor();
void calibrate(Temperature actualTemperature);
Temperature currentTemperature() const;
private:
...
};
Здесь два оператора определения типов Temperature и Location вводят удобные псевдонимы для простейших типов, и это позволяет нам выражать свои абстракции на языке предметной области [К сожалению, конструкция typedef не определяет нового типа данных и не обеспечивает его защиты. Например, следующее описание в C++: "typedef int Count;" просто вводит синоним для примитивного типа int. Как мы увидим в следующем разделе, другие языки, такие как Ada и Eiffel, имеют более изощренную семантику в отношении строгой типизации базовых типов]. Temperature - это числовой тип данных в формате с плавающей точкой для записи температур в шкале Фаренгейта. Значения типа Location обозначают места фермы, где могут располагаться температурные датчики.
Класс TemperatureSensor - это только спецификация датчика; настоящая его начинка скрыта в его закрытой (private) части.
Класс TemperatureSensor это еще не объект. Собственно датчики - это его экземпляры, и их нужно создать, прежде чем с ними можно будет оперировать. Например, можно написать так:
Temperature temperature;
TemperatureSensor greenhouse1Sensor(1);
TemperatureSensor greenhouse2Sensor(2);
temperature = greenhouse1Sensor.currentTemperature();
Рассмотрим инварианты, связанные с операцией currentTemperature. Предусловие включает предположение, что датчик установлен в правильным месте в теплице, а постусловие - что датчик возвращает значение температуры в градусах Фаренгейта.
До сих пор мы считали датчик пассивным: кто-то должен запросить у него температуру, и тогда он ответит. Однако есть и другой, столь же правомочный подход. Датчик мог бы активно следить за температурой и извещать другие объекты, когда ее отклонение от заданного значения превышает заданный уровень. Абстракция от этого меняется мало: всего лишь несколько иначе формулируется ответственность объекта. Какие новые операции нужны ему в связи с этим? Обычной идиомой для таких случаев является обратный вызов. Клиент предоставляет серверу функцию (функцию обратного вызова), а сервер вызывает ее, когда считает нужным. Здесь нужно написать что-нибудь вроде:
class ActiveTemperatureSensor {
public: ActiveTemperatureSensor (Location, void (*f)(Location, Temperature));
~ActiveTemperatureSensor();
void calibrate(Temperature actualTemperature);
void establishSetpoint(Temperature setpoint, Temperature delta);
Temperature currentTemperature() const;
private:
...
};
Новый класс ActiveTemperatureSensor стал лишь чуть сложнее, но вполне адекватно выражает новую абстракцию. Создавая экземпляр датчика, мы передаем ему при инициализации не только место, но и указатель на функцию обратного вызова, параметры которой определяют место установки и температуру. Новая функция установки establishSetpoint позволяет клиенту изменять порог срабатывания датчика температуры, а ответственность датчика состоит в том, чтобы вызывать функцию обратного вызова каждый раз, когда текущая температура actualTemperature отклоняется от setpoint больше чем на delta.
При этом клиенту становится известно место срабатывания и температура в нем, а дальше уже он сам должен знать, что с этим делать.
Заметьте, что клиент по-прежнему может запрашивать температуру по собственной инициативе. Но что если клиент не произведет инициализацию, например, не задаст допустимую температуру? При проектировании мы обязательно должны решить этот вопрос, приняв какое-нибудь разумное допущение: пусть считается, что интервал допустимых изменений температуры бесконечно широк.
Как именно класс ActiveTemperatureSensor выполняет свои обязательства, зависит от его внутреннего представления и не должно интересовать внешних клиентов. Это определяется реализацией его закрытой части и функций-членов.
Рассмотрим теперь другой пример абстракции. Для каждой выращиваемой культуры должен быть задан план выращивания, описывающий изменение во времени температуры, освещения, подкормки и ряда других факторов, обеспечивающих высокий урожай. Поскольку такой план является частью предметной области, вполне оправдана его реализация в виде абстракции.
Для каждой выращиваемой культуры существует свой отдельный план, но общая форма планов у всех культур одинакова. Основу плана выращивания составляет таблица, сопоставляющая моментам времени перечень необходимых действий. Например, для некоторой культуры на 15-е сутки роста план предусматривает поддержание в течении 16 часов температуры 78¦F, из них 14 часов с освещением, а затем понижение температуры до 65¦F на остальное время суток. Кроме того, может потребоваться внесение удобрений в середине дня, чтобы поддержать заданное значение кислотности.
Таким образом, план выращивания отвечает за координацию во времени всех действий, необходимых при выращивании культуры. Наше решение заключается в том, чтобы не поручать абстракции плана само выполнение плана, - это будет обязанностью другой абстракции. Так мы ясно разделим понятия между различными частями системы и ограничим концептуальный размер каждой отдельной абстракции.
С точки зрения интерфейса объекта-плана, клиент должен иметь возможность устанавливать детали плана, изменять план и запрашивать его.
Например, объект может быть реализован с интерфейсом "человек-компьютер" и ручным изменением плана. Объект, который содержит детали плана выращивания, должен уметь изменять сам себя. Кроме того, должен существовать объект-исполнитель плана, умеющий читать план. Как видно из дальнейшего описания, ни один объект не обособлен, а все они взаимодействуют для обеспечения общей цели. Исходя из такого подхода, определяются границы каждого объекта-абстракции и протоколы их связи.
На C++ план выращивания будет выглядеть следующим образом. Сначала введем новые типы данных, приближая наши абстракции к словарю предметной области (день, час, освещение, кислотность, концентрация):
// Число, обозначающее день года
typedef unsigned int Day;
// Число, обозначающее час дня
typedef unsigned int Hour;
// Булевский тип
enum Lights {OFF, ON};
// Число, обозначающее показатель кислотности в диапазоне от 1 до 14
typedef float pH;
// Число, обозначающее концентрацию в процентах: от 0 до 100
typedef float Concentration;
Далее, в тактических целях, опишем следующую структуру:
// Структура, определяющая условия в теплице
struct Condition {
Temperature temperature;
Lights lighting;
pH acidity;
Concentration concentration;
};
Мы использовали структуру, а не класс, поскольку Condition - это просто механическое объединение параметров, без какого-либо внутреннего поведения, и более богатая семантика класса здесь не нужна.
Наконец, вот и план выращивания:
class GrowingPlan (
public: GrowingPlan (char *name);
virtual ~GrowingPlan();
void clear();
virtual void establish(Day, Hour, const Condition&);
const char* name() const;
const Condition& desiredConditions(Day, Hour) const;
protected:
...
};
Заметьте, что мы предусмотрели одну новую обязанность: каждый план имеет имя, и его можно устанавливать и запрашивать. Кроме того заметьте, что операция establish описана как virtual для того, чтобы подклассы могли ее переопределять.
В открытую (public) часть описания вынесены конструктор и деструктор объекта (определяющие процедуры его порождения и уничтожения), две процедуры модификации (очистка всего плана clear и определение элементов плана establish) и два селектора-определителя состояния (функции name и desiredCondition).Мы опустили в описании закрытую часть класса, заменив ее многоточием, поскольку сейчас нам важны внешние ответственности, а не внутреннее представление класса.