Иерархия
Что такое иерархия? Абстракция - вещь полезная, но всегда, кроме самых простых ситуаций, число абстракций в системе намного превышает наши умственные возможности. Инкапсуляция позволяет в какой-то степени устранить это препятствие, убрав из поля зрения внутреннее содержание абстракций. Модульность также упрощает задачу, объединяя логически связанные абстракции в группы. Но этого оказывается недостаточно.
Значительное упрощение в понимании сложных задач достигается за счет образования из абстракций иерархической структуры. Определим иерархию следующим образом:
Иерархия - это упорядочение абстракций, расположение их по уровням.
Основными видами иерархических структур применительно к сложным системам являются структура классов (иерархия "is-a") и структура объектов (иерархия "part of").
Примеры иерархии: одиночное наследование. Важным элементом объектно-ориентированных систем и основным видом иерархии "is-a" является упоминавшаяся выше концепция наследования. Наследование означает такое отношение между классами (отношение родитель/потомок), когда один класс заимствует структурную или функциональную часть одного или нескольких других классов (соответственно, одиночное и множественное наследование). Иными словами, наследование создает такую иерархию абстракций, в которой подклассы наследуют строение от одного или нескольких суперклассов. Часто подкласс достраивает или переписывает компоненты вышестоящего класса.
Семантически, наследование описывает отношение типа "is-a". Например, медведь есть млекопитающее, дом есть недвижимость и "быстрая сортировка" есть сортирующий алгоритм. Таким образом, наследование порождает иерархию "обобщение-специализация", в которой подкласс представляет собой специализированный частный случай своего суперкласса. "Лакмусовая бумажка" наследования - обратная проверка; так, если B не есть A, то B не стоит производить от A.
Рассмотрим теперь различные виды растений, выращиваемых в нашей огородной системе.
Мы уже ввели обобщенное представление абстрактного плана выращивания растений. Однако разные культуры требуют разных планов. При этом планы для фруктов похожи друг на друга, но отличаются от планов для овощей или цветов. Имеет смысл ввести на новом уровне абстракции обобщенный "фруктовый" план, включающий указания по опылению и сборке урожая. Вот как будет выглядеть на C++ определение плана для фруктов, как наследника общего плана выращивания.
// Тип Урожай
typedef unsigned int Yield;
class FruitGrowingPlan : public GrowingPlan {
public: FruitGrowingPlan(char* name);
virtual ~FruitGrowingPlan();
virtual void establish(Day, Hour, Condition&);
void scheduleHarvest(Day, Hour);
Boolean isHarvested() const;
unsigned daysUntilHarvest() const;
Yield estimatedYield() const;
protected: Boolean repHarvested;
Yield repYield;
Абстракции образуют иерархию.
Это означает, что план выращивания фруктов FruitGrowingPlan является разновидностью плана выращивания GrowingPlan. В него добавлены параметры repHarvested и repYield, определены четыре новые функции и переопределена функция establish. Теперь мы могли бы продолжить специализацию - например, определить на базе "фруктового" плана "яблочный" класс AppleGrowingPlan.
В наследственной иерархии общая часть структуры и поведения сосредоточена в наиболее общем суперклассе. По этой причине говорят о наследовании, как об иерархии обобщение-специализация. Суперклассы при этом отражают наиболее общие, а подклассы - более специализированные абстракции, в которых члены суперкласса могут быть дополнены, модифицированы и даже скрыты. Принцип наследования позволяет упростить выражение абстракций, делает проект менее громоздким и более выразительным. Кокс пишет: "В отсутствие наследования каждый класс становится самостоятельным блоком и должен разрабатываться "с нуля". Классы лишаются общности, поскольку каждый программист реализует их по-своему. Стройность системы достигается тогда только за счет дисциплинированности программистов.
Наследование позволяет вводить в обращение новые программы, как мы обучаем новичков новым понятиям - сравнивая новое с чем-то уже известным" [64].
Принципы абстрагирования, инкапсуляции и иерархии находятся между собой в некоем здоровом конфликте. Данфорт и Томлинсон утверждают: "Абстрагирование данных создает непрозрачный барьер, скрывающий состояние и функции объекта; принцип наследования требует открыть доступ и к состоянию, и к функциям объекта для производных объектов" [65]. Для любого класса обычно существуют два вида клиентов: объекты, которые манипулируют с экземплярами данного класса, и подклассы-наследники. Лисков поэтому отмечает, что существуют три способа нарушения инкапсуляции через наследование: "подкласс может получить доступ к переменным экземпляра своего суперкласса, вызвать закрытую функцию и, наконец, обратиться напрямую к суперклассу своего суперкласса" [66]. Различные языки программирования по-разному находят компромисс между наследованием и инкапсуляцией; наиболее гибким в этом отношении является C++. В нем интерфейс класса может быть разделен на три части: закрытую (private), видимую только для самого класса; защищенную (protected), видимую также и для подклассов; и открытую (public), видимую для всех.
Примеры иерархии: множественное наследование. В предыдущем примере рассматривалось одиночное наследование, когда подкласс FruitGrowingPlan был создан только из одного суперкласса GrowingPlan. В ряде случаев полезно реализовать наследование от нескольких суперклассов. Предположим, что нужно определить класс, представляющий разновидности растений.
class Plant {
public: Plant(char* name, char* species);
virtual ~Plant();
void setDatePlanted(Day);
virtual establishGrowingConditions(const Condition&);
const char* name() const;
const char* species() const;
Day datePlantedt) const;
protected: char* repName;
char* repSpecies;
Day repPlanted;
private:
...
};
Каждый экземпляр класса plant будет содержать имя, вид и дату посадки.
Кроме того, для каждого вида растений можно задавать особые оптимальные условия выращивания. Мы хотим, чтобы эта функция переопределялась подклассами, поэтому она объявлена виртуальной при реализации в C++. Три параметра объявлены как защищенные, то есть они будут доступны и классу, и подклассам (закрытая часть спецификации доступна только самому классу).
Изучая предметную область, мы приходим к выводу, что различные группы культивируемых растений - цветы, фрукты и овощи, - имеют свои особые свойства, существенные для технологии их выращивания. Например, для цветов важно знать времена цветения и созревания семян. Аналогично, время сбора урожая важно для абстракций фруктов и овощей. Создадим два новых класса - цветы (Flower) и фрукты-овощи (FruitVegetable); они оба наследуют от класса Plant. Однако некоторые цветочные растения имеют плоды! Для этой абстракции придется создать третий класс, FlowerFruitVegetable, который будет наследовать от классов Flower и FruitVegetablePlant.
Чтобы не было избыточности, в данном случае очень пригодится множественное наследование. Сначала давайте опишем отдельно цветы и фрукты-овощи.
class FlowerMixin {
public: FlowerMixin(Day timeToFlower, Day timeToSeed);
virtual ~FlowerMixin();
Day timeToFlower() const;
Day timeToSeed() const;
protected:
...
};
class FruitVegetableMixin {
public: FruitVegetableMixin(Day timeToHarvest);
virtual ~FruitVegetableMixin();
Day timeToHarvest() const;
protected:
...
};
Мы намеренно описали эти два класса без наследования. Они ни от кого не наследуют и специально предназначены для того, чтобы их подмешивали (откуда и имя Mixin) к другим классам. Например, опишем розу:
class Rose : public Plant, public FlowerMixin...
А вот морковь:
class Carrot : public Plant, public FruiteVegetableMixin {};
В обоих случаях классы наследуют от двух суперклассов: экземпляры подкласса Rose включают структуру и поведение как из класса Plant, так и из класса FlowerMixin. И вот теперь определим вишню, у которой товаром являются как цветы, так и плоды:
class Cherry : public Plant, public FlowerMixin, FruitVegetableMixin...
Множественное наследование - вещь нехитрая, но оно осложняет реализацию языков программирования. Есть две проблемы - конфликты имен между различными суперклассами и повторное наследование. Первый случай, это когда в двух или большем числе суперклассов определено поле или операция с одинаковым именем. В C++ этот вид конфликта должен быть явно разрешен вручную, а в Smalltalk берется то, которое встречается первым. Повторное наследование, это когда класс наследует двум классам, а они порознь наследуют одному и тому же четвертому. Получается ромбическая структура наследования и надо решить, должен ли самый нижний класс получить одну или две отдельные копии самого верхнего класса? В некоторых языках повторное наследование запрещено, в других конфликт решается "волевым порядком", а в C++ это оставляется на усмотрение программиста. Виртуальные базовые классы используются для запрещения дублирования повторяющихся структур, в противном случае в подклассе появятся копии полей и функций и потребуется явное указание происхождения каждой из копий.
Множественным наследованием часто злоупотребляют. Например, сладкая вата - это частный случай сладости, но никак не ваты. Применяйте ту же "лакмусовую бумажку": если B не есть A, то ему не стоит наследовать от A. Часто плохо сформированные структуры множественного наследования могут быть сведены к единственному суперклассу плюс агрегация других классов подклассом.
Примеры иерархии: агрегация. Если иерархия "is а" определяет отношение "обобщение/специализация", то отношение "part of" (часть) вводит иерархию агрегации. Вот пример.
class Garden {
public: Garden();
virtual ~Garden();
protected: Plant* repPlants[100];
GrowingPlan repPlan;
};
Это - абстракция огорода, состоящая из массива растений и плана выращивания.
Имея дело с такими иерархиями, мы часто говорим об уровнях абстракции, которые впервые предложил Дейкстра [67].
В иерархии классов вышестоящая абстракция является обобщением, а нижестоящая - специализацией. Поэтому мы говорим, что класс Flower находится на более высоком уровне абстракции, чем класс Plant. В иерархии "part of" класс находится на более высоком уровне абстракции, чем любой из использовавшихся при его реализации. Так класс Garden стоит на более высоком уровне, чем класс Plant.
Агрегация есть во всех языках, использующих структуры или записи, состоящие из разнотипных данных. Но в объектно-ориентированном программировании она обретает новую мощь: агрегация позволяет физически сгруппировать логически связанные структуры, а наследование с легкостью копирует эти общие группы в различные абстракции.
В связи с агрегацией возникает проблема владения, или принадлежности объектов. В нашем абстрактном огороде одновременно растет много растений, и от удаления или замены одного из них огород не становится другим огородом. Если мы уничтожаем огород, растения остаются (их ведь можно пересадить). Другими словами, огород и растения имеют свои отдельные и независимые сроки жизни; мы достигли этого благодаря тому, что огород содержит не сами объекты Plant, а указатели на них. Напротив, мы решили, что объект GrowingPlan внутренне связан с объектом Garden и не существует независимо. План выращивания физически содержится в каждом экземпляре огорода и погибает вместе с ним. Подробнее про семантику владения мы будем говорить в следующей главе.